· De Morgan’s Laws

· !(a && b) is the same as !a || !b

· !(a || b) is the same as !a && !b

· Short Circuit Evaluation: (&& and ||) if first operand unambiguously define the result, the second operand is not evaluated

· OBOBs: Off by One Bugs: when iteration runs one time too many/few

· Function: something that takes a specific number of arguments of specific data types. (can take no arguments)

· Arguments that’s Passed by Value: function works w/ a copy of the variable passed to it (no way o change)

· Passed by Reference: (&): change the original value

· Passed by const Reference: value can’t change, but this way is efficient

· Aliasing: may happen when argument passed by reference

Void Move(const & a, const & b, & c, & d)

{

c = a;

//won’t work if Move(x,y,y,x)

d = b;

//result in two variable w/ values o x

}

apvector
· always passed by reference or const reference

· length() returns the size o vector

· resize (int newSize) sets size o vector

· Subscript: placement o info in vector (start at 0) (element entered either as rvalue or lvalue)

· Access by Vector[0]

· If subscript value goes beyond length()-1 (like length()), the => run-tim error
· if v2 = v1, then v2’s size gets adjusted then copy each element

apmatrix
· numrows() & numcols() replace length()

· resize(int newRows, int newCols)

· Matrix(row, cols, element)

· Pass by ref or const ref

· Subscript: (2) Matrix[row][col]

· Both start from 0; rvalue or lvalue (may appear on left or right side o assignment operator)

· when no size is set, vector or matrix has dimension 0 or (0,0) (empty

· when cin >> v[k]; >> operator skip all white space: space, tab, line breaks

apstring
· represented either by literal string (“asdf”) or variables

· string = “hey” ; string(“hey”); string = varString; string(varString)

· resize automatically when copied, made, or read

· pass by ref or const ref

· ==, !=, <, >, etc: alphabetically: CASE sensitive

· int length() (return length

· int find(ch) (return position

· int find(str) (return position; npos (-1) if none found

· istream & getline(is, str): read one line from input stream is(cin or a file) into str

Structures and Classes

· Private members: class by default

· Public members: struct by default

· Constructor: may have one or several: determine all valid forms of declarations of const and var for the data type associated w/ class/struct

· Destructor: may have one WHAT???
· Default constructor: constructor that doesn’t take any arguments

· Constructor/destructor always public member functions
· They don’t have any reutrn data type, not even void

· Automatic Constructor: if no constructor are specified, reserves memory for class/struct

· Automatic Destructor: release that memory

· Initializer list: (important when struct has apvector, matrix, or string)

Club::Club(const apstring & name, int num)

: clubName(name), nunMembers(0), clubMembers(num)

{} //better than placea a clubMembers.resize(num) in constructor’s body

Fraction::Fraction()

: numberator(1), denominator(1)

{} //empty body: all the work is done by initializer list

· Class Definition: have no info o what a constructor, accessor, modifier does

· Class Implementation: actually has instruction for what they do (Club::Club.. example)

· Encapsulation: all data members made private: limit access to class’s data outside the class. Forces programmer to use provided member functions
· Data member usually start w/ “my”
· Accessor: public member functions that use, but not change, data members
· Have const after declaration (int Club::GetNumberOfMembers() const
· Modifier: functions that change one/several members of a class
· Const Member Function: (see accessor) Function that don’t change data members
· Overloaded Member Functions: have same name but take different numbes or types o arguments

· Each treated as different functions, compiler distinguishes based on whichever types the functions call for
· Client: functions and modules that call public member functions o class

· Member functions accesed by dot: Club com(…) … int num = com.getNum();
Templated Function, Classes, and Overloaded Functions

· Overloaded Function: functions w same name but different numbers/type o argument

· Either all members o same class or are all free standing functions
void Swap(int & a, int & b)…
void Swap(apstring & s1, apstring & s2) …

· Templated Functions: ones that work w/ multiple data types (like apclass)

· Whole classes can be written this way

Template <class anyType>
void Swap(anyType & a, anyType & b)…

· overloaded functions shouldn’t be confused w/ templated functions

Overloaded Operators

· free standing operator: z = x + y or z = operator+ (x,)

· class member: z = x + y or z = x.operator+ (y)

· operator has ready access to private members o class

· BUT: 1st operand (z) must be always of the type o that class

· Overloading >> and <<
ostream & operator<< (ostream & os, const Date & date)
{
 date.Print(os); // calls public member function that output date to os
 return os;
}

· + is overloaded so that char and be added to string, etc.

Input/Output

· >> skips all “white spaces” (space, tab, newline, etc.)

· so if have:
blah
// need to can ignore function after this or the
**** // next get line will be an empty string (>> doesn’t get /n)

· << is overloaded as free standing operator w/ no access to the private members

Computer Systems

· processor (CPU), RAM (random access memory), peripherals

· operating system (MS DOS), compiler, object (like in object modules), linker (combine object module & build program), debugger

· Specifications: desc. O what software should do and how it works.

· Top down design: 1st. general structure/high level task/modules. 2nd: refine design o each task, etc. etc.

· Top Down Development: 1st: lay out code @ high level. & substitute stubs for low level functions

· Bottom up dev: start w/ low level (hopefully reusable in other projects)

· Data structure: combine method o data organization w/ methods o accessing/manipulating the data
ex: array w/ function for modifying the array

· Abstract Data Type (ADT): emphasizes properties and fnction instead o specific implementation. Description

· Procedural abstraction: description o procedure not tied to specific hardware, data type, other details.

· Reusable code: fragments o code (that works) or software modules (sets o function, classes); general in nature and can be used again in other projects

· Modular development and testing: C++ allows you to split function and classes between different module. Module can be compiled & tested separately.

· User Interface: behavior o program as it interacts w/ user: screens, menus, commands, sounds, etc.

Selection/Insertion Sort: comparison approx. n2: quadratic b/c two nested loops

· Selection: find largest among first k element & change it w/ k-th element; run for k-1 times; n(n-1)/2 comparisons

· Insertion: shift each element one step right until the variable is !> the next element, insert the variable; n(n-1)/2 comparisons (average case about half that #)
ex: a, b, c, e, f, g (var: d) (a, b, c, e, f, , g (etc. etc. (a, b, c, d, e, f, g
MergeSort/QuickSort: divide and conquer. Take n log n comparisons as oppose to n2 comparison in quadratic sort. Recursive sort

· Merge: 1. Split arry into halves 2. Sort each half recursively & store to temp 3. Merge element in ascending order from two sorted halves

· Quicksort: 1. Choose pivot 2. Divide array according to the pivot 3. Recursive the sides
· No need temp BUT less predictable, hope pivot divides evenly
=> ((random array, (sorted array)
Sequential & Binary Search

· Sequential: for random order: start at beginning & search

· n element take on average n/2 iteration to n iteration

· Binary: for sorted arrays: find middle, if target < middle, then middle bc last & etc.
ex: 1, 2, 3, 4, 5 (find: 2) (middle: 3 (middle: 2 (found!

· Array o 2k –1 element w/ at most k iterations (n element need log2 n iteration)
1,000,000 elements need at most 20 interations

Recursions: stink

